Reading: BCAR.Cdn2018

Model: from source reading

Problem Type: (B5) for BCAR

Given Calculate B5 for BCAR for each VaR level (capital required for reserve risk)

this insurer is a: primary insurer

diversification factor applicable to these LOBs is:

0.690

reserves	B/S amt	adj	deficiency	discount
LOB1	392	39	0.98	0.91
LOB2	121	6	1.01	0.94

capital factors	VaR 95	VaR 99	VaR 99.5	VaR 99.6
LOB1	0.17	0.26	0.29	0.30
LOB2	0.20	0.30	0.34	0.35

	year-end	gross
	in-force	premiums
CY	policies	written
3rd prior	100	1,000
2nd prior	114	1,109
1st prior	122	1,109
current	122	1,203

industry growth thresholds	
1-yr growth rate	5.0%
3-yr avg growth rate	3.0%

step 1:	calculate FA	AR (Final A	djusted Reserv	e)			reserve				
	FAR	=	(B/S amt	+	adj)	x	deficiency factor *	х	discount factor		
LOB1:	FAR1	=	(392	+	39)	x	0.980	Х	0.910	=	384
LOB2:	FAR2	=	(121	+	6)	x	1.010	Х	0.940	=	121

^{*} a reserve deficiency of 15% would get a deficiency factor of 1.15

step 2: calculate **required capital** by LOB & VaR level by applying capital factors to FAR from step 1

									capital	
					Example:		from		factor	
	VaR 95	VaR 99	VaR 99.5	VaR 99.6	Var 95		step 1		VaR 95	
LOB1:	65	100	111	115	65	=	384	X	0.17	(given)
LOB2:	24	36	41	42	24	=	121	X	0.20	(given)
total	89	136	152	158						

step 3: calculate the final B5 values at each VaR level (do this by applying the <u>diversification</u> factor and the <u>excess growth</u> factor to the <u>total</u> row from step 2)

total x 0.6		.36 152	158	
x 0.6	00 000			
	90 0.690	0.690	0.690	<== diversification factor for independence of LOB1 & LOB2
x 1.0	39 1.039	1.039	1.039	<== growth factor for LOB1 & LOB2 (calculated below)
B5 NRC	64	98 109	113	<== FINAL ANSWER

growth factor calculation:

since this insurer is a primary insurer we use:

in-force policies

	growth
CY	metric
3rd prior	100
2nd prior	114
1st prior	122
current	122

1-yr growth rate
$$0.0\%$$
 = (122 / 122) - 3-yr avg growth rate 6.9% = (122 / 100) $^{\land}$ (1/3) - 3

industry growth THRESHOLDS

1-yr growth rate 5.0% (given)
3-yr avg growth rate 3.0% (given)

indicated excess growth FACTORS

1-yr growth rate 1.000 =
$$max$$
 (0.0% , 0.0% - 5.0% 3-yr avg growth rate 1.039 = max (0.0% , 6.9% - 3.0%

SELECTED excess growth FACTOR

judgement ==> = max (1-yr indicated factor , 3-yr indicated factor)

Reading: BCAR.Cdn2018

Model: from source reading

Problem Type: (B5) for BCAR

Given Calculate B5 for BCAR for each VaR level (capital required for reserve risk)

this insurer is a: reinsurer

diversification factor applicable to these LOBs is:

0.780

reserves	B/S amt	adj	deficiency	discount
LOB1	382	8	0.97	0.90
LOB2	178	11	1.05	0.98

capital factors	VaR 95	VaR 99	VaR 99.5	VaR 99.6
LOB1	0.15	0.23	0.26	0.27
LOB2	0.23	0.35	0.40	0.41

	year-end	gross
	in-force	premiums
CY	policies	written
3rd prior	100	1,000
2nd prior	110	1,097
1st prior	124	1,211
current	139	1,211

industry growth thresholds	
1-yr growth rate	3.0%
3-yr avg growth rate	5.0%

step 1:	calculate FA	AR (Final A =	djusted Reserv (B/S amt	e) +	adj)	x	reserve deficiency factor *	x	discount factor		
LOB1: LOB2:	FAR1 FAR2	=	(382 (178	++	8) 11)	x x	0.970 1.050	x x	0.900 0.980	=	340 194

^{*} a reserve deficiency of 15% would get a deficiency factor of 1.15

step 2: calculate **required capital** by LOB & VaR level by applying capital factors to FAR from step 1

									capital	
					Example:		from		factor	
	VaR 95	VaR 99	VaR 99.5	VaR 99.6	Var 95		step 1		VaR 95	
LOB1:	51	78	89	92	51	=	340	Х	0.15	(given)
LOB2:	45	68	78	80	45	=	194	Х	0.23	(given)
total	96	146	166	172						

step 3: calculate the final B5 values at each VaR level (do this by applying the <u>diversification</u> factor and the <u>excess growth</u> factor to the <u>total</u> row from step 2)

B5 NRC	76	116	132	136	<== FINAL ANSWER
Х	1.016	1.016	1.016	1.016	<== growth factor for LOB1 & LOB2 (calculated below)
Х	0.780	0.780	0.780	0.780	<== diversification factor for independence of LOB1 & LOB2
total	96	146	166	172	
	VaR 95	VaR 99	VaR 99.5	VaR 99.6	

growth factor calculation:

since this insurer is a reinsurer we use:

gross written premiums

	growth
CY	metric
3rd prior	1,000
2nd prior	1,097
1st prior	1,211
current	1,211

1-yr growth rate
$$0.0\%$$
 = $(1,211 / 1,211)$ - 13-yr avg growth rate 6.6% = $(1,211 / 1,000)^{(1/3)}$ - 13

industry growth THRESHOLDS

1-yr growth rate 3.0% (given)
3-yr avg growth rate 5.0% (given)

indicated excess growth FACTORS

1-yr growth rate 1.000 =
$$max$$
 (0.0% , 0.0% - 3.0% 3-yr avg growth rate 1.016 = max (0.0% , 6.6% - 5.0%

SELECTED excess growth FACTOR

judgement ==> 1.016 = max (1-yr indicated factor , 3-yr indicated factor)