Problem:
Problem Type:
calculate ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{J}, \mathrm{K}$) - there is no "I"
2018.Fall \#16

Balance

 Sheet| Page 20.10 Asset | $\mathbf{2 0 1 7}$ | $\mathbf{2 0 1 6}$ |
| :--- | ---: | ---: |
| recoverable from reinsurers: | | |
| UEP | n/a | 1,200 |
| UCAE | A | 1,760 |
| <= ceded values | | |
| <= ceded values | | |
| total investments including cash | 30,000 | 25,000 |

Page 20.20 Liabilities \& Equity	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 6}$
UEP	J	3,000
UCAE	B	4,477

Income

 Statement| Page 20.30 Statement of Income | $\mathbf{2 0 1 7}$ | $\mathbf{2 0 1 6}$ |
| :--- | ---: | :---: |
| NWP | 16,000 | 15,000 |
| NEP | 15,800 | n/a |
| GROSS claims \& adjustment expenses | C | n/a |
| REINSURER'S SHARE of claims \& adj exps | D | n/a |
| NET claims \& adjustment expenses | E | n/a |
| NET investment income | 1,800 | n/a |

Runoff

CY	Page 60.41 Net Clms \& Adj Exps Runoff Discounted	AY 2016	AY 2017	$\begin{array}{r} \text { AY } 2017 \\ \text { \& prior } \\ \hline \end{array}$
2016	UCAE end of year	1,200		
	IBNR end of year	1,517		
2017	Paid during year	F	n/a	n/a
	UCAE end of year	900	n/a	2,100
	IBNR end of year	1,159	n/a	K
	investment income from UCAE \& IBNR Amount: excess/deficiency Ratio: excess/deficiency	G		
		n/a		
		H		

Bond Portfolio

rating	class	book val.	mkt. val.	duration	yield
govt	HTM	2,000	1,000	0.8	1.0%
AAA	HTM	8,000	8,000	10.0	2.0%
A	HTM	15,000	17,000	3.0	3.0%

Triangle Data

GROSS paid loss (cumulative)

AY	12	24
2016	1,000	3,000
2017	1,000	

year 1	20%
year 2	30%
year 3	50%

GROSS unpaid loss (undiscounted)

AY		12
2016	n/a	3,000
2017	4,000	

MfADs

MfAD (claims):	15.00%
MfAD (re):	2.00%
MfAD (inv):	0.75%

* reinsurance quota-share RETENTION ==>

Step 1: calculate the discount rate as a weighted average of the yields in the bond portfolio

weight *	yield	* weight $=($ book value) \times duration
1,600	1.0\%	
80,000	2.0\%	
45,000	3.0\%	
	2.34\%	t rate

Step 2a: calculate the gross PV for AY 2017 and AY 2016 (gross of quota-share reinsurance) at
2.34\%

AY 2017:	unpaid	$=$	4,000	(at 12 months)		x	4,000	/	$1.0234{ }^{\wedge} 0.5$
	PV ${ }_{17}$	=	30\%	/	80\%				
		+	50\%	/	80\%	X	4,000	/	$1.0234{ }^{\text {^ } 1.5}$
		=	1,483	+	2,415				
		$=$	3,898						
AY 2016:	unpaid	=	3,000	(at 24 months)					
	PV 16	=	50\%	/	50\%	x	3,000	/	$1.0234{ }^{\wedge} 0.5$
		$=$	2,966						
==>	gross PV for both AYs at:			2.34\%	is	6,863			

Step 2b: calculate the gross PV for AY 2017 and AY 2016 (gross of quota-share reinsurance) at
1.59\%
is
6,906
(similar calculation to Step 1)

1.59\%

is 6,906

Step 3a:	gross APV	=	6,906	+	15.00\%	X	6,863	$=$	7,936
Step 3b:	net APV	=	6,906	X	60\%				
		+	6,863	X	60\%	X	15.00\%		
		+	6,863	X	40\%	x	2.00\%		
		=	4,816						
Step 3c:	ceded APV	=	7,936	-	4,816	=	3,119		

Now we can start filling in the values for the letters:
$A \& B$ are very easy: (\underline{B} is the net claims liability, \underline{A} is the reinsurance recoverable asset)
A
B

$=$
$=$

UCAE recoverable from reinsurer	(Step 3c)
gross UCAE liability	(Step 3a)

$C, D \& E$ are more confusing:

C $\quad=\quad$ the GROSS "income" due to GROSS claims in 2017 (think of it as negative income)

=	(2017 gross UCAE)	-	(2016 gross UCAE)	+	(gross paid in 2017) *
$=$	B	-	given info	+	from paid triangle
=	7,936	-	4,477	+	3,000

* (gross paid in 2017)					
$=$	2016 @ 24	-	$2016 @ 12$	+	$2017 @ 12$
$=$	3,000	-	1,000	+	1,000
$=$	3,000				

D = the CEDED "income" due to CEDED claims in 2017 (this is a recoverable)

$=$	(2017 ceded UCAE)	-	$(2016$ ceded UCAE)	+	(ceded paid in 2017) $)^{* *}$
$=$	A	-	given info	+	see below
$=$	3,119	-	1,760	+	1,200
$=$	2,559				

* (ceded paid in 2017)			
(gross paid in 2017	x	40%
$=$	3,000	x	40%
$=$	1,200		

E $\quad=\quad$ net "income" due to claims in 2017 (this is also negative income)
$\begin{array}{lccc}= & C & - & D \\ = & 6,459 & - & 2559\end{array}$
$\begin{array}{llll}= & 6,459 & - & 2,559\end{array}$
$=3,899$
F is easy: if you know that the year labels in the left column of the table represent Calendar Years
and the year labels in the top row represent Accident Years

Use the paid loss triangle and the quota-share percentage

F	$=$	$\mathrm{qs} \%$	x	$($	AY 2016 paid in CY 2017	$)$	
	$=$	60%	x	$($	3,000	-	1,000

G \& H are related: \underline{H} is the excess (deficiency) ratio and \underline{G} is the investment income in the excess (deficiency) formula

You might like to review the practice template for the excess (defiency) ratio before proceding! In any case, we first need to calculate G. Note that UCAE + IBNR are directly from the Runoff exhibit in the given info.

G	=	(investment yield) *	x	avg [(UCAE+IBNR) $)_{\text {beg of } 17}$, (UCAE + IBNR) ${ }_{\text {end of } 17}$]				
	$=$	6.77\%	x	avg [2,717		2,059]
	$=$	162						

NII or net investment income comes from the Income Statement invested assets come from the Balance Sheet
$\mathrm{H}=\left[(\mathrm{UCAE}+\mathrm{IBNR})_{\mathrm{AY} 16 @ 12}-(\mathrm{UCAE}+\mathrm{IBNR})_{\mathrm{AY} 16 @ 24}-(\text { net Pd })_{12-24}+\mathrm{G}\right] /(\mathrm{UCAE}+\mathrm{IBNR}) \mathrm{AY} 16 @ 12$

Now:

$(\mathrm{UCAE}+\mathrm{IBNR})_{\mathrm{AY} 16 ~ @ ~ 12 ~}$	$=$	1,200	+	1,517	$=$	2,717
$(\mathrm{UCAE}+\mathrm{IBNR})_{\text {AY16 @ } 24}$	$=$	900	+	1,159	$=$	2,059
$(\text { net Pd })_{12-24}$	$=$	F			$=$	1,200

Therefore:

$$
\mathrm{H} \quad=\quad-14.0 \%<==\text { Excess (Deficiency) Ratio }
$$

[^0]Recall the standard formula for EP in terms of WP and UEP:

EP	$=$	WP	-	$\operatorname{chg}(U E P)$

Apply this to our situation to obtain:

$$
\begin{array}{lllll}
\mathrm{NEP}_{17} & = & \text { NWP }_{17} & - & {\left[(\text { net UEP })_{17}-(\text { net UEP })_{16}\right]} \\
15,800 & = & 16,000 & - & {\left[(\text { net UEP })_{17}-\left((\text { gross UEP })_{16}-(\text { ceded UEP })_{16}\right)\right]}
\end{array}
$$

Ok, this is getting messy so I'm going to let you do the algebra. Substitute these values above:

$(\text { gross UEP })_{16}$	$=$	3,000
$($ ceded UEP)	<= from Page 20.20 Balance Sheet	
$(1,200$	$<==$ from Page 20.10 Balance Sheet	

The result is:

$$
(\text { net UEP })_{17} \quad=\quad 2,000
$$

And finally, using the quota-share percentage to GROSS UP this net value, we obtain:

$(\text { gross UEP })_{17}$		$(\text { net UEP })_{17}$	$/$	60%
J	$=$	2,000	$/$	60%
J	$=$	3,333		

K (finally): K is (net IBNR) 17 \& prior and the standard formula is IBNR $=$ (Total Liabilities) - Case

Solution Summary:

| A | $=$ | 3,119 |
| :---: | :--- | :--- | :--- |
| B | $=$ | 7,936 |
| C | $=$ | 6,459 |
| D | $=$ | 2,559 |
| E | $=$ | 3,899 |

F	$=$	1,200
G	$=$	162
H	$=$	-14.0%
J	$=$	3,333
K	$=$	2,716

[^0]: J is hard:
 J is (gross UEP) ${ }_{17}$ but we can't find that directly. We must first find (net UEP) ${ }_{17}$.

