Paper: CIA.Accting (CIA.Accting) 01a-Question

Problem: 01

Problem Type: Calculate the change in (NI, OCI, Eq) due to the change in bond yield as given below.

Formula chg(NI) = chg(PV(FVO)) - chg(APV(Liabs))

chg(OCI) = chg(PV(AFS))

Formula chg(Eq) = chg(NI) + chg(OCI)

Given: data as of CY 2014

original bond yield: 3.50% * other bond info: next page
new bond yield: 4.00% * original + MfAD(inv) o.w. lots

of extra calcs 38,987

PV(@ 3.5%) for FVO bonds: **38,987** PV(@ 3.5%) for AFS bonds: **14,790**

PV(@ 4%) for FVO bonds: **38,730**PV(@ 4%) for AFS bonds: **14,584**

 NU (Net Unpaid):
 32,000
 see page

 MfAD(clms):
 12.00%
 APV(NU(@ 3.5%):
 33,757
 <= 04b</td>

 MfAD(inv):
 50 bps
 APV(NU(@ 4%):
 33,435
 <= 05b</td>

% cum pd

at end of 2015 30%

chg(NI) = chg(OCI) = chg(Eq) =		65 -206 -141						
chg(NI) chg(OCI)	=	-257	-	-322	= =	65 -206 -141	=	chg(Eq)

Paper: CIA.Accting (CIA.Accting) 02a-Question

Problem: 01a

Problem Type: Calculate the PV of the cash flows for each class of bond at the **ORIGINAL** bond yield

Concept: PRIOR TO maturity date: CF(bond) = coupon

AT maturity date: CF(bond) = coupon + (par value)

where coupon = (coupon rate) x (par value)

Given: PV date: 2014 * yr-end

bond yield: 3.50%

	bond #1	bond #2	bond #3	bond #4	
class	FVO	FVO	FVO	AFS	
maturity	2015	2015	2016	2017	* yr-end
coupon rt	3.25%	4.25%	3.25%	3.00%	
# coupons/yr	1	1	1	1	
par value	12,000	12,000	15,000	15,000	

Assume: All pmts are made AT THE END of the year

					Total	S	Discour	nting
timing	bond #1	bond #2	bond #3	bond #4	FVO	AFS	FVO	AFS
2015	12,390	12,510	488	450	25,388	450	24,529	435
2016			15,488	450	15,488	450	14,458	420
2017				15,450	0	15,450	0	13,935
2018					0		0	
	-						38,987	14,790

Paper: CIA.Accting (CIA.Accting) 03a-Question

Problem: 01b

Problem Type: Calculate the PV of the cash flows for each class of bond at the **NEW** bond yield

Concept: PRIOR TO maturity date: CF(bond) = coupon

AT maturity date: CF(bond) = coupon + (par value)

where coupon = (coupon rate) x (par value)

Given: PV date: 2014 * yr-end

bond yield: 4.00%

	bond #1	bond #2	bond #3	bond #4	
class	FVO	FVO	FVO	AFS	
maturity	2015	2015	2016	2017	* yr-end
coupon rt	3.25%	4.25%	3.25%	3.00%	
# coupons/yr	1	1	1	1	
par value	12,000	12,000	15,000	15,000	

Assume: All pmts are made AT THE END of the year

					Tota	Totals		nting
timing	bond #1	bond #2	bond #3	bond #4	FVO	AFS	FVO	AFS
2015	12,390	12,510	488	450	25,388	450	24,411	433
2016			15,488	450	15,488	450	14,319	416
2017				15,450	0	15,450	0	13,735
2018					0		0	
	-						38,730	14,584

Paper: CIA.Accting (CIA.Accting) 04a-Question

Problem: 02a

Problem Type: Calculate APV(NU) at **ORIGINAL** bond yield

Note: This APV calc works slightly differently from MfAD:

MfAD: - for given AY, use (unpd at end of CY, pmt pattern) to project future pmts

assume pmts are made mid-year

pull **projected pmts** back to end of **CY** (0.5, 1.5, 2.5,...)

Here: - for given CY, use (unpd at end of CY, pmt pattern) to project future pmts

pmts are made at end of year,

0%

pull **projected pmts** back to end of given **CY** (1, 2, 3,...)

Assume: pmt are made at end-of-yr

MfAD(re):

Given: 2014

NU at 12 mths: 32,000 CU at 12 mths: 0 i: 3.5%

MfAD(inv): 50 bps
MfAD(clms): 12%

 % cum pd

 at end of 2015
 30%

 at end of 2016
 70%

 at end of 2017
 100%

	% pd in				3.5%		3.5%		3.00%		3.00%
timing	period		NU		disct'ing		NU(@i)		disct'ing		NU(@i')
2015	0.300	x	32,000	/	1.035	=	9,275	1	1.030	>	9,320
2016	0.400	X	32,000	/	1.071	=	11,949		1.061	>	12,065
2017	0.300	X	32,000	/	1.109	=	8,659		1.093	>	8,785
check	1.000						29,883				30,171
						x	12%	MfAD(clms)		
							3,586				

Now, SUM the beige highlighted cells to get APV:

Paper: CIA.Accting (CIA.Accting) 05a-Question

Problem: 02b

Problem Type: Calculate APV(NU) at **NEW** bond yield

Note: This APV calc works slightly differently from MfAD:

MfAD: - for given AY, use (unpd at end of CY, pmt pattern) to project future pmts

assume pmts are made mid-year

pull **projected pmts** back to end of **CY** (0.5, 1.5, 2.5,...)

Here: - for given CY, use (unpd at end of CY, pmt pattern) to project future pmts

pmts are made at end of year,

pull **projected pmts** back to end of given **CY** (1, 2, 3,...)

Assume: pmt are made at end-of-yr

Given: 2014

NU at 12 mths: 32,000 CU at 12 mths: 0 i: 4.0%

i: 4.0% MfAD(inv): 50 bps

MfAD(clms): 12% MfAD(re): 0%
 % cum pd

 at end of 2015
 30%

 at end of 2016
 70%

 at end of 2017
 100%

	% pd in				4.0%		4.0%		3.50%		3.50%
timing	period		NU		disct'ing		NU(@i)		disct'ing		NU(@i')
2015	0.300	x	32,000	/	1.040	=	9,231		1.035	>	9,275
2016	0.400	X	32,000	/	1.082	=	11,834		1.071	>	11,949
2017	0.300	X	32,000	/	1.125	=	8,534		1.109	>	8,659
check	1.000						29,599				29,883
						X	12%	MfAD(clm	s)		
							3,552				

Now, SUM the beige highlighted cells to get APV: