Problem:
Problem Type:
Formula $\operatorname{chg}(\mathrm{NI}) \quad=\operatorname{chg}(\mathrm{PV}(\mathrm{FVO})) \quad-\quad \operatorname{chg}(\mathrm{APV}($ Liabs $))$

Formula

Given:

data as of CY	2014	* other bond info: next page * original + MfAD(inv) o.w. lots of extra calcs		
original bond yield:	3.50\%			
new bond yield:	4.00\%			
PV(@ 3.5\%) for FVO bonds:	38,987			
PV(@ 3.5\%) for AFS bonds:	14,790			
PV(@ 4\%) for FVO bonds:	38,730			
PV(@ 4\%) for AFS bonds:	14,584			
NU (Net Unpaid):	32,000			see page
MfAD(clms):	12.00\%	APV(NU(@ 3.5\%):	33,757	<= 04b
MfAD(inv):	50 bps	APV(NU(@ 4\%):	33,435	<= 05b
	\% cum pd			
at end of 2015	30\%			

$\begin{aligned} & \operatorname{chg}(\mathrm{NI})= \\ & \operatorname{chg}(\mathrm{OCl})= \end{aligned}$		65							(CIA.Accting) 01b-Answer	
		-206								
chg(Eq) $=$		-141								
chg(NI)	=	-257	-	-322	=	65				
chg(OCl)	=				=	-206				
						-141	=	chg(Eq)		

Problem Type: Calculate the PV of the cash flows for each class of bond at the ORIGINAL bond yield

Concept:

PRIOR TO maturity date:	$C F($ bond	$=$	coupon
AT maturity date:	$C F($ bond $)$	$=$	coupon + (par value)
where	coupon	$=$	(coupon rate) \times (par value)

Given:

PV date:	2014	* yr-end
bond yield:	3.50%	

	bond \#1	bond \#2	bond \#3	bond \#4	
class	FVO	FVO	FVO	AFS	
maturity	2015	2015	2016	2017	* yr-end
coupon rt	3.25%	4.25%	3.25%	3.00%	
\# coupons/yr	1	1	1	1	
par value	12,000	12,000	15,000	15,000	

Assume: All pmts are made AT THE END of the year

$\mathrm{PV}(\mathrm{FVO})=$	38,987	$\mathrm{PV}(\mathrm{AFS})=$	14,790	

					Totals		Discounting	
timing	bond \#1	bond \#2	bond \#3	bond \#4	FVO	AFS	FVO	AFS
2015	12,390	12,510	488	450	25,388	450	24,529	435
2016			15,488	450	15,488	450	14,458	420
2017				15,450	0	15,450	0	13,935
2018					0		0	
							38,987	14,790

Problem Type: Calculate the PV of the cash flows for each class of bond at the NEW bond yield

Given:

PV date:	2014	* yr-end
bond yield:	4.00%	

	bond \#1	bond \#2	bond \#3	bond \#4	
class	FVO	FVO	FVO	AFS	
maturity	2015	2015	2016	2017	* yr-end
coupon rt	3.25%	4.25%	3.25%	3.00%	
\# coupons/yr	1	1	1	1	
par value	12,000	12,000	15,000	15,000	

Assume: \quad All pmts are made AT THE END of the year

$\mathrm{PV}(\mathrm{FVO})=$	38,730	$\mathrm{PV}(\mathrm{AFS})=$	14,58	

					Totals		Discounting	
timing	bond \#1	bond \#2	bond \#3	bond \#4	FVO	AFS	FVO	AFS
2015	12,390	12,510	488	450	25,388	450	24,411	433
2016			15,488	450	15,488	450	14,319	416
2017				15,450	0	15,450	0	13,735
2018					0		0	
							38,730	14,584

Problem Type: Calculate APV(NU) at ORIGINAL bond yield

Note: \quad This APV calc works slightly differently from MfAD:

MfAD:	- for given AY, use (unpd at end of CY, pmt pattern) to project future pmts
	assume pmts are made mid-year
	pull projected pmts back to end of $\mathrm{CY}(0.5,1.5,2.5, \ldots)$
Here:	- for given CY, use (unpd at end of CY, pmt pattern) to project future pmts pmts are made at end of year, pull projected pmts back to end of given $\mathrm{CY}(1,2,3, \ldots)$

Assume: pmt are made at end-of-yr

				\% cum pd
Given:	for AY:	2014	at end of 2015	30\%
	NU at 12 mths:	32,000	at end of 2016	70\%
	CU at 12 mths:	0	at end of 2017	100\%
	i :	3.5\%		
	MfAD(inv):	50		
	MfAD(clms):	12\%		
	MfAD(re):	0\%		

Now, SUM the beige highlighted cells to get APV: 33,757

Note: \quad This APV calc works slightly differently from MfAD:

MfAD:	- for given AY , use (unpd at end of CY, pmt pattern) to project future pmts
	assume pmts are made mid-year
	pull projected pmts back to end of $\mathrm{CY}(0.5,1.5,2.5, \ldots)$
Here:	- for given CY , use (unpd at end of CY, pmt pattern) to project future pmts
	pmts are made at end of year,
	pull projected pmts back to end of given $\mathrm{CY}(1,2,3, \ldots)$

Assume: pmt are made at end-of-yr

				\% cum pd
Given:	for AY:	2014	at end of 2015	30\%
	NU at 12 mths:	32,000	at end of 2016	70\%
	CU at 12 mths :	0	at end of 2017	100\%
	i:	4.0\%		
	MfAD(inv):	50		
	MfAD(clms):	12\%		
	MfAD(re):	0\%		

Now, SUM the beige highlighted cells to get APV:
33,435

