Paper: CIA.Accting (CIA.Accting) 01a-Question

Problem: 01

Problem Type: Calculate the change in (NI, OCI, Eq) due to the change in bond yield as given below.

Formula chg(NI) = chg(PV(FVO)) - chg(APV(Liabs))

chg(OCI) = chg(PV(AFS))

Formula chg(Eq) = chg(NI) + chg(OCI)

Given: data as of CY 2016

original bond yield:

new bond yield:

3.50%

* other bond info: next page

* original + MfAD(inv) o.w. lots

of extra calcs

PV(@ 2.5%) for FVO bonds: **42,361** PV(@ 2.5%) for AFS bonds: **13,444**

PV(@ 3.5%) for FVO bonds: **41,952** PV(@ 3.5%) for AFS bonds: **13,314**

 NU (Net Unpaid):
 37,000
 see page

 MfAD(clms):
 7.00%
 APV(NU(@ 2.5%):
 38,294
 <= 04b</td>

 MfAD(inv):
 100 bps
 APV(NU(@ 3.5%):
 37,501
 <= 05b</td>

% cum pd

at end of 2017 30%

chg(NI) =		383							(CIA.Accting)	01b-Answer
chg(OCI) =		-130								
chg(Eq) =		254								
chg(NI)	=	-409	-	-793	=	383				
chg(OCI)	=				=	-130				
						254	=	chg(Eq)		

Paper: CIA.Accting (CIA.Accting) 02a-Question

Problem: 01a

Problem Type: Calculate the PV of the cash flows for each class of bond at the **ORIGINAL** bond yield

Concept: PRIOR TO maturity date: CF(bond) = coupon

AT maturity date: CF(bond) = coupon + (par value)

where coupon = (coupon rate) x (par value)

Given: PV date: 2016 * yr-end

bond yield: 2.50%

	bond #1	bond #2	bond #3	bond #4	
class	FVO	FVO	FVO	AFS	
maturity	2017	2017	2017	2017	* yr-end
coupon rt	6.00%	5.00%	7.00%	6.00%	
# coupons/yr	1	1	1	1	
par value	15,000	15,000	11,000	13,000	

Assume: All pmts are made AT THE END of the year

					Tota	Totals		nting
timing	bond #1	bond #2	bond #3	bond #4	FVO	AFS	FVO	AFS
2017	15,900	15,750	11,770	13,780	43,420	13,780	42,361	13,444
2018					0		0	
2019					0		0	
2020					0		0	
	•						42,361	13,444

Paper: CIA.Accting (CIA.Accting) 03a-Question

Problem: 01b

Problem Type: Calculate the PV of the cash flows for each class of bond at the **NEW** bond yield

Concept: PRIOR TO maturity date: CF(bond) = coupon

AT maturity date: CF(bond) = coupon + (par value)

where coupon = (coupon rate) x (par value)

Given: PV date: 2016 * yr-end

bond yield: 3.50%

	bond #1	bond #2	bond #3	bond #4	
class	FVO	FVO	FVO	AFS	
maturity	2017	2017	2017	2017	* yr-end
coupon rt	6.00%	5.00%	7.00%	6.00%	
# coupons/yr	1	1	1	1	
par value	15,000	15,000	11,000	13,000	

Assume: All pmts are made AT THE END of the year

41,952

13,314

					Tota	Totals		nting
timing	bond #1	bond #2	bond #3	bond #4	FVO	AFS	FVO	AFS
2017	15,900	15,750	11,770	13,780	43,420	13,780	41,952	13,314
2018					0		0	
2019					0		0	
2020					0		0	
	•						41.952	13.314

CIA.Accting (CIA.Accting) 04a-Question Paper:

Problem: 02a

Problem Type: Calculate APV(NU) at ORIGINAL bond yield

Note: This APV calc works slightly differently from MfAD:

> - for given AY, use (unpd at end of CY, pmt pattern) to project future pmts MfAD:

> > assume pmts are made mid-year

pull **projected pmts** back to end of **CY** (0.5, 1.5, 2.5,...)

- for given CY, use (unpd at end of CY, pmt pattern) to project future pmts Here:

pmts are made at end of year,

0%

pull **projected pmts** back to end of given **CY** (1, 2, 3,...)

pmt are made at end-of-yr Assume:

MfAD(re):

for AY: 2016 Given:

37,000 NU at 12 mths: CU at 12 mths: 0 2.5% i:

100 bps MfAD(inv): MfAD(clms): 7%

% cum pd at end of 2017 at end of 2018 at end of 2019

30%

55%

100%

	% pd in				2.5%		2.5%		1.50%		1.50%
timing	period		NU		disct'ing		NU(@i)		disct'ing		NU(@i')
2017	0.300	X	37,000	/	1.025	=	10,829		1.015	>	10,936
2018	0.250	X	37,000	/	1.051	=	8,804		1.030	>	8,979
2019	0.450	X	37,000	/	1.077	=	15,461		1.046	>	15,923
check	1.000						35,095				35,837
						х	7%	MfAD(cln	ns)		
							2,457				

Now, SUM the beige highlighted cells to get APV:

38,294

Paper: CIA.Accting (CIA.Accting) 05a-Question

Problem: 02b

Problem Type: Calculate APV(NU) at **NEW** bond yield

Note: This APV calc works slightly differently from MfAD:

MfAD: - for given AY, use (unpd at end of CY, pmt pattern) to project future pmts

assume pmts are made mid-year

pull **projected pmts** back to end of **CY** (0.5, 1.5, 2.5,...)

Here: - for given CY, use (unpd at end of CY, pmt pattern) to project future pmts

pmts are made at end of year,

pull **projected pmts** back to end of given **CY** (1, 2, 3,...)

Assume: pmt are made at end-of-yr

 Given:
 2016

 NU at 12 mths:
 37,000

CU at 12 mths: 0
i: 3.5%

 MfAD(inv):
 100 bps

 MfAD(clms):
 7%

 MfAD(re):
 0%

 % cum pd

 at end of 2017
 30%

 at end of 2018
 55%

 at end of 2019
 100%

	% pd in				3.5%		3.5%		2.50%		2.50%
timing	period		NU		disct'ing		NU(@i)		disct'ing		NU(@i')
2017	0.300	X	37,000	/	1.035	=	10,725		1.025	>	10,829
2018	0.250	X	37,000	/	1.071	=	8,635		1.051	>	8,804
2019	0.450	X	37,000	/	1.109	=	15,017		1.077	>	15,461
check	1.000						34,377				35,095
						х	7%	MfAD(cln	ns)		
							2,406				

Now, SUM the beige highlighted cells to get APV:

37,501