Paper:
Problem:
Problem Type:

CapAvail (GROSS):	69,500
deduc(UnregRe):	0
deduc(BC Limit):	1,625

Practice
Calculate the diversification credit and the final MCT ratio

Given:

1,625

CapReq(InsRsk):	35,584
CapReq(MktRsk):	9,000
CapReq(CrdRsk):	4,550
CapReq(OpnRsk):	10,597
diversification correlation:	0.5

Concept:

MCT ratio	$=$ CapAvail $/ \min$ CapReq
min CapReq	$=\operatorname{CapReq(total)~} / 1.5$
CapReq(tot)	$=\operatorname{SUM}(I M C O)-($ diversification credit)

diversification credit $=$ Sum 1 \quad SQRT(Sum 2)

Let:
A $\quad=\quad$ CapReq(AssRsk)
$=$
CapReq(MktRsk) + CapReq(CrdRsk
I
$=\quad$ CapReq(InsRsk)

Then:

Sum 1	$=$	A	+	1		
Sum 2	$=$	A^{2}	+	1^{2}	+	$2 R \times A \times I$

template:	CapAvail		=	67,875	=	CapAvail(GROSS) - deduc. 1 - deduc. 2
	DC		=	5,180	=	$A+I-\operatorname{sqrt}\left(A^{2}+I^{2}+2 R A I\right)$
	CapReq		=	54,552	=	SUM(IMCO) - DC
	minCapReq		=	36,368	=	CapReq / 1.5
	MCT ratio		=	187\%	=	CapAvail / minCapReq
MCT ratio	$=$	187\%				
minCapReq	=	36,368				
CapReq(tot)	$=$	54,552				
diversifica	ation credit	$=$	5,180			
	(Sum 1)	=	49,134			
	QRT(Sum 2)	=	43,954			

Problem:
Problem Type:

Practice
A/R Ref:
Notation:
Concept:

Note:

This problem is trivial because all you do is sum the given quantities. But before going to the next problem, you should MEMORIZE the names of these 8 items, AND be able to list the 4 that can potentially be modified.

Problem:

Problem Type:

Practice
Calculate the deduction from MCT capital available for unregistered reinsurance recoverables

A/R Ref:	page:	70.60 (Cdn Insurers)
	page:	70.61 (Foreign Insurers)

Answer: \quad deduction $=\max (0, \mathrm{D}) * D$ must be >0 to effect a deduction in CapAvail

Note: If completing page 70.60 or 70.61 , we would then just drop the $\operatorname{ABS}(\mathrm{D})$ into either col (42) or (44)

Paper:
Problem:
Problem Type:

Notation:

Concept:

Answer:

Concept:	Here, the CapAvail is AFTER the deduction for unregistered reinsurance.	
Given:	CapAvail (GROSS):	69,500
	deduc for unreg re:	0
	AOCI:	7,000
	qualifying category B instruments:	16,500
	qualifying category C instruments:	6,000

		actual minus limit			
BC	$=$	62,500	x	40%	$=$
limit	25,000	0			
	62,500	x	7%	$=$	4,375

* do you subtract the unreg reins deduc BEFORE applying the 40% and 7% ?
--> YES! (according to the answer key for 15.S)
--> NO! (according to the actual MCT paper, but since there are no exs in the paper, its hard to verify)
- the paper isn't sufficiently precise regarding the term 'capital available', whether it means GROSS or after deductions

[^0]Practice
Calculate the MCT capital required at target for insurance risk

Problem:

Problem Type:

Given:

Concept:

Question:

Answer:
summary of elements of insurance risk (amts required ABOVE \& BEYOND normal reserves)

	CapReq
unpaid clms	14,070
premium liabilities	14,514
unregistered reinsurers	2,000
self-insured retention	n / a
catastrophes	5,000
accident \& sickness business	n / a

CapReq(InsRsk) = SUM(above items)
how is the MCT CapReq different from the APV of the PolLiabs

APV accounts for some of the InsRsk, MktRsk, \& CrdRsk that is within the MCT framework:

- Clms Devlpt (InsRsk)
- Relns rsk (InsRsk \& CrdRsk)
- IntRt rsk (MktRsk)

But the MCT margins account for much more than what's included in the MfADs

Also, the methodology underlying the MCT is rules-based, whereas the the CIA's MfAD paper is principles-based. (This is aside from a couple of specific rules in the MfAD paper for calculating IntRt margins using the weighted formula or explicit quantification methods.)

Paper:
Problem:
Problem Type:

Recall:
(from
MfAD.01a)

Given:

line	NU	margin
property	49,000	13%
auto-L	77,000	10%
	126,000	

Concept:
NU :
(\$) Net UCAE \& IBNR, discounted

CapReq(unpd) = SumProduct(NU x margin)

Calculate the unpaid clms component for MCT capital required at target for insurance risk
(x PfADs)

* discounted, excluding PfADs

Paper:
Problem:
Problem Type:

Notation: NPrLb: Net Premium Liabilities (discounted and excluding PfAD)
DWP: Direct Written Premium
AWP: Assumed WP
CWP: Ceded WP

			DWP	AWP	CWP
line	NPrLb	margin	pr 12 mth	pr 12 mth	pr 12 mth
property	15,000	18%	81,000	20,000	10,000
auto-L	60,000	16%	104,000	23,000	28,000
	75,000		185,000	43,000	38,000

Concept:

OSFI.MCT

Practice

Calculate the premium liabilities component for MCT capital required at target for insurance risk

Given:

SUM over LOBs	Max (NWP x 30\%, NPrLb) x margin

where
NWP = DWP + AWP - CWP

	NWP	NWP $\times 30 \%$ $=(2)$	NPrLb	Max of $(2) \&(3)$	margin	(3)
line	(1)	$=(4)$	(5)	(4) $\times(5)$ $=(6)$		
property	91,000	27,300	15,000	27,300	18%	4,914
auto-L	99,000	29,700	60,000	60,000	16%	9,600
						14,514

Paper:
Problem:
Problem Type:

Recall:
and
deduction from CapAvail for unregistered reinsurance $=\max (0, \mathrm{D})$

Given:

Note:
High values of (UEP, O/S) lead to a higher CapReq

$D>0:$	deduction from CapAvail: yes	reduction to CapReq: no	(MCT lower)
$D<0:$	deduction from CapAvail: no	reduction to CapReq: yes	(MCT higher)
$D=0:$	no effect on CapAvail or CapReq		

Paper:
Problem:
Problem Type:

OSFI.MCT

Given:

A/R p70.60 name	UEP ceded (20)	O/S recov (22)	Reins Recv (24)	Reins Pay (26)	$\begin{gathered} \text { NOD } \\ (32)+(34) \end{gathered}$	$\begin{aligned} & \text { LOC } \\ & (38) \\ & \hline \end{aligned}$		Capital Factor
ABC Re	15,000	5,000	2,000	9,000	8,000	6,000	NOD:	0.25\%
DEF Re	0	0	0	0	0	0	LOC:	0.50\%
	15,000	5,000	2,000	9,000	8,000	6,000		

counter-party default risk for B / S assets: counter-party default risk for off-B/S exposures: counter-party default risk for UnregReColl \& SIRs:
proportional allocation of xs collateral: 0.0\%

Concept: \quad CapReq(CrdRsk) $=$ sum(CP Default Risks)

* the only item we don't have is the one for UnregRe \& SIRs

AHA! I finally see the point in calculating the reduction in CapReq for xs collateral.
You need the proportional allocation to calculate the 3rd component of CapReq(CrdRsk)

WITHOUT any reduction in CapReq for xs collateral, the CP DefRsk for UnregRe \& SIRs would be:
(NOD \times CapFctr $)+($ LOC \times CapFctr $)=50.0$
BUT, we must multiply this by (1-proportional allocation):
$50.0 \mathrm{x} \quad 100.0 \% \quad 50.0$

Paper:
Problem:
Problem Type:

OSFI.MCT

Given:

A/R p70.60	UEP ceded (20)	O/S recov (22)	Reins Recv (24)	Reins Pay (26)	NOD	(32) $+(34)$	LOC
name	(38)						
ABC Re	15,000	5,000	2,000	9,000	8,000	6,000	
DEF Re	0	0	0	0	0	0	
	15,000	5,000	2,000	9,000	8,000	6,000	

Concept:
A: collateral required to reduce (margin required) to 0
$+\quad 115 \% \times($ UEP $+\mathrm{O} / \mathrm{S})$

+ receivables
- payables

B: total collateral
$+\quad$ NOD + LOC
$\mathrm{C}:$ excess collateral $=\quad \max (0, \mathrm{~B}-\mathrm{A})$

THEN proportional allocation of excess collateral $\quad=\quad$ excess $/$ total $=C / B$

Concept:

Concept:

| CapReq(collateral) | $=$ SumProduct (CapFctr, collateral) |
| :--- | :--- | :--- |
| CapReqReduc | $=\quad$ CapReq(collateral) \times (proportional allocation) |

Paper:

Problem:

Problem Type:

Notation:	AWP(ig):	(\$) AWP (last 12 mths$)$ from intra-grp pooling
	CWP(ig):	(\$) CWP (last 12 mths$)$ from intra-grp pooling

Given:

DWP: 185,000
AWP:
CWP:
growth:

43,000
38,000 22.00\%
$\begin{array}{ll}\text { AWP(ig): } & 0 \\ \text { CWP(ig): } & 0\end{array}$
Concept: CR(0) = CapReq before (operational risk, diversification credit)
Concept: upper limit on CapReq(OpnRsk) $=30 \% \times \operatorname{CR}(0)$

Concept: Use WP and appropriate factors to determine if CapReq(OpnRsk) should be lower than the given upper limit of $30 \% \times \operatorname{CR}(0)$

Concept:

* purpose: dampens OpnRsk for cos. with (HighVol-LowComplexity) business
with (High Levels of ReIns)
$\operatorname{CR}(0) \quad=\quad 49,134 \frac{x 30 \%}{-->} \quad 14,740 \quad=\quad$ upper limit on CapReq(OpnRsk)

2nd string of components for alternative to ultimate cap - prems from INTRA-GRP POOLING

0.75%	x	AWP(ig)	0
0.75%	x	CWP(ig)	0

[^0]: --> WAIT! Now I get it!!

 - you do ALL the 'extra deductions to get CapAvail THEN do the validation tests
 - i.e. use (NetCapAvail - AOCI) in validation test

